Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Type of study
Language
Year range
1.
Electron. j. biotechnol ; 38: 40-48, Mar. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1051342

ABSTRACT

BACKGROUND: The use of agro-industrial wastes to produce high value-added biomolecules such as biosurfactants is a promising approach for lowering the total costs of production. This study aimed to produce biosurfactants using Rhizopus arrhizus UCP 1607, with crude glycerol (CG) and corn steep liquor (CSL) as substrates. In addition, the biomolecule was characterized, and its efficiency in removing petroderivatives from marine soil was investigated. RESULTS: A 22 factorial design was applied, and the best condition for producing the biosurfactant was determined in assay 4 (3% CG and 5% CSL). The biosurfactant reduced the surface tension of water from 72 to 28.8 mN/m and produced a yield of 1.74 g/L. The preliminary biochemical characterization showed that the biosurfactant consisted of proteins (38.0%), carbohydrates (35.4%), and lipids (5.5%). The compounds presented an anionic character, nontoxicity, and great stability for all conditions tested. The biomolecule displayed great ability in dispersing hydrophobic substrates in water, thereby resulting in 53.4 cm2 ODA. The best efficiency of the biosurfactant in removing the pollutant diesel oil from marine soil was 79.4%. CONCLUSIONS: This study demonstrated the ability of R. arrhizus UCP1607 to produce a low-cost biosurfactant characterized as a glycoprotein and its potential use in the bioremediation of the hydrophobic diesel oil pollutant in marine soil


Subject(s)
Rhizopus/metabolism , Surface-Active Agents/metabolism , Gasoline , Soil , Surface-Active Agents/toxicity , Surface Tension , Biodegradation, Environmental , Marine Environment , Zea mays , Agribusiness , Hydrophobic and Hydrophilic Interactions , Glycerol , Industrial Waste , Micelles , Mucorales/metabolism
2.
Electron. j. biotechnol ; 18(6): 418-427, Nov. 2015. ilus, graf
Article in English | LILACS | ID: lil-772285

ABSTRACT

Background The effects of exposure to copper, during growth, on the production of biomass, total protein, catalase, glutathione-S transferase, glutathione peroxidase, peroxidase, polyphosphate, acid and alkaline phosphatases, ultrastructure and the ability to remove this metal from Aspergillus niger, obtained from caatinga soil, were evaluated. Results All parameters tested were influenced by the concentration of metal in the culture medium. The presence of metal induced high levels of antioxidant enzymes, including lipid peroxidation, thereby revealing the appearance of an oxidative stress response. The variation in polyphosphate levels indicates the participation of the polymer in response to stress induced by copper. The activities of the phosphatases were positively influenced by growing them in the presence of copper. Ultrastructure changes in the cell surface, electron density, thickness, and septation were visualized by exposing cells to increasingly larger concentrations of metal. The isolate was able to remove the agent from the growth medium, while maintaining its physiological functions. The metal removed from the cultures exposed to 0.5 mM, 1 mM and 2 mM copper exhibited percentages of removal equivalent to 75.78%, 66.04% and 33.51%. Conclusions The results indicate that the isolate was able to grow in high concentrations of copper, activates mechanisms for adaptation and tolerance in the presence of metal, and is highly efficient at removing the agent. Such data are fundamental if a better understanding is to be reached of the cellular and molecular abilities of native isolates, which can be used to develop bioprocesses in environmental and industrial areas.


Subject(s)
Aspergillus niger/enzymology , Aspergillus niger/physiology , Adaptation, Biological , Oxidative Stress , Copper/chemistry , Polyphosphates , Microscopy, Electron, Scanning , Lipid Peroxidation , Enzymes , Antioxidants
3.
Rev. Inst. Med. Trop. Säo Paulo ; 36(2): 111-4, mar.-abr. 1994. tab
Article in English | LILACS | ID: lil-140148

ABSTRACT

Leptospirose e uma importante causa de insuficiencia renal aguda, em nosso ambiente. Embora varios sejam os mecanismos implicados, o papel da rabdomiolise na patogenese da insuficiencia renal aguda na leptospirose ainda nao foi analisado. Com esse objetivo, 16 pacientes com o diagnostico da forma icterohemorragica da leptospirose consecutivamenete admitidos no Hospital Couto Maia, Salvador, Bahia, foram prospectivamente estudados....


Subject(s)
Humans , Male , Female , Child , Adolescent , Adult , Middle Aged , Acute Kidney Injury/complications , Leptospirosis/etiology , Rhabdomyolysis/complications
SELECTION OF CITATIONS
SEARCH DETAIL